Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The unpredictability of random numbers is fundamental to both digital security and applications that fairly distribute resources. However, existing random number generators have limitations-the generation processes cannot be fully traced, audited, and certified to be unpredictable. The algorithmic steps used in pseudorandom number generators are auditable, but they cannot guarantee that their outputs were a priori unpredictable given knowledge of the initial seed. Device-independent quantum random number generators can ensure that the source of randomness was unknown beforehand, but the steps used to extract the randomness are vulnerable to tampering. Here, for the first time, we demonstrate a fully traceable random number generation protocol based on device-independent techniques. Our protocol extracts randomness from unpredictable non-local quantum correlations, and uses distributed intertwined hash chains to cryptographically trace and verify the extraction process. This protocol is at the heart of a public traceable and certifiable quantum randomness beacon that we have launched. Over the first 40 days of operation, we completed the protocol 7434 out of 7454 attempts -- a success rate of 99.7%. Each time the protocol succeeded, the beacon emitted a pulse of 512 bits of traceable randomness. The bits are certified to be uniform with error times actual success probability bounded by 2^(−64). The generation of certifiable and traceable randomness represents one of the first public services that operates with an entanglement-derived advantage over comparable classical approaches.more » « lessFree, publicly-accessible full text available November 8, 2025
-
Work on scaling laws has found that large language models (LMs) show predictable improvements to overall loss with increased scale (model size, training data, and compute). Here, we present evidence for the claim that LMs may show inverse scaling, or worse task performance with increased scale, e.g., due to flaws in the training objective and data. We present empirical evidence of inverse scaling on 11 datasets collected by running a public contest, the Inverse Scaling Prize, with a substantial prize pool. Through analysis of the datasets, along with other examples found in the literature, we identify four potential causes of inverse scaling: (i) preference to repeat memorized sequences over following in-context instructions, (ii) imitation of undesirable patterns in the training data, (iii) tasks containing an easy distractor task which LMs could focus on, rather than the harder real task, and (iv) correct but misleading few-shot demonstrations of the task. We release the winning datasets at https://inversescaling.com/data to allow for further investigation of inverse scaling. Our tasks have helped drive the discovery of U-shaped and inverted-U scaling trends, where an initial trend reverses, suggesting that scaling trends are less reliable at predicting the behavior of larger-scale models than previously understood. Overall, our results suggest that there are tasks for which increased model scale alone may not lead to progress, and that more careful thought needs to go into the data and objectives for training language models.more » « less
-
Work on scaling laws has found that large language models (LMs) show predictable improvements to overall loss with increased scale (model size, training data, and compute). Here, we present evidence for the claim that LMs may show inverse scaling, or worse task performance with increased scale, e.g., due to flaws in the training objective and data. We present empirical evidence of inverse scaling on 11 datasets collected by running a public contest, the Inverse Scaling Prize, with a substantial prize pool. Through analysis of the datasets, along with other examples found in the literature, we identify four potential causes of inverse scaling: (i) preference to repeat memorized sequences over following in-context instructions, (ii) imitation of undesirable patterns in the training data, (iii) tasks containing an easy distractor task which LMs could focus on, rather than the harder real task, and (iv) correct but misleading few-shot demonstrations of the task. We release the winning datasets at inversescaling.com/data to allow for further investigation of inverse scaling. Our tasks have helped drive the discovery of U-shaped and inverted-U scaling trends, where an initial trend reverses, suggesting that scaling trends are less reliable at predicting the behavior of larger-scale models than previously understood. Overall, our results suggest that there are tasks for which increased model scale alone may not lead to progress, and that more careful thought needs to go into the data and objectives for training language models.more » « less
An official website of the United States government

Full Text Available